
Designing a Robust 
Monitoring System

Scott McCarty
@fatherlinux

scott.mccarty@gmail.com



My Background

• 13 years with Linux, 11 years 
in operations

• Cut teeth on Statistics in Computer 
Science and Anthropology

• Web Operations

• Petit: Open source log analysis. In 
Fedora, Ubuntu, EPEL

• Written many Nagios Checks (Mostly 
Perl/Bash)

• Maintainer for Cacti/Nagios BGP 
Checks

• Maintainer for Cacti MySQL Stats



Background Knowledge

• Four Types of Data

– Nominal: Names of servers

– Ordinal: Active Users

– Interval: Load Average, CPU (No Natural Zero)

– Ratio: Open Socket, Pipes, Files

• FCAPS

– Fault: up/down alerting

– Configuration: CFEngine, Perl, Bash

– Accounting: auditd, syslog, cloud

– Performance: Data Acquisition, Graphs

– Security: Confidentiality, Integrity, Availability



Background Knowledge

• Fault Monitoring

– Fire and Police

– Minority Report

• Data Acquisition

– Criminal Record

– Cameras

• What is Knowledge: For Philosophers

• Loose framework, not too constrained

• Petit – Log Analysis Program used for examples

– Originally written in perl (logtool, lt)



Basics

• Differences between Data Acquisition 
and Fault Monitoring
– Logging
– Graphing
– Alerting

• Cost of more robust systems
– 8 to 5 Systems Administrators
– 24 x 7 support center



Event Categories

• Recorded

– Events which are worth recording

– Operations people do not need to know about these events 
unless there is a problem somewhere else in the system

– Letters and Numbers: Nominal to Ratio Data

– Graphs and Logs 

• Action

– Events for which action must be taken, but can be during 
business hours

– Prefer operations dashboard: Red Light/Green Light

• Critical Action

– Alert Paging



Recorded

• Data Import/Exports

• Granular Job Tracking

• Load Average, CPU, Memory

• BGP Route Views Checks

• Trace Routes

• Configuration File Generation

• Backup Processes



Action

• Software Vulnerabilities

• SLA in Danger

• Tape Cleaning

• Captured Command Output: Catch All

• Fail Flags



Critical Action
• Network Down

• Server Down

• Service Down

• SLA Not Met

• Good Thresholds

– Kernel Structures

– Open Sockets

– Open Pipes

– Open Files

• Bad Thresholds

– Not Load Average

– Not CPU

– Not Memory



System Design

• Remember data acquisition and fault monitoring

• Always cross monitor

• Be very careful determining what is production

• Be realistic SLA
– At hosting company, we moved from 1-2 mintute alerts to 7-8 

and service did not change noticeably, but moral did.

• Be creative fault detection
– Record traceroutes

– Open sockets, pipes, files

– BGP Route Views

– Granular job tracking



Quantitative Data

• Developed theory: increase to alert 
time would not impact return to 
service

• Academic Honesty: Did not have 
quantitative data to suport or deny 
theory

• Amount of paging was too sporadic
– Did not attempt calculation of 

standard deviation
– Will be added to petit eventually :-)



Over Years

• End of 2007 changed alert SLA

• Do not have data for all of 2007



2007

• Notice scale is much larger

• There were more pages in 2007



2008

• Notice scale is much less than half

• There were less pages in 2008



2009

• Similar to 2008 (Normal???)

• Quiet in December



2010
• Completely Thrown Off

• Tried to normalize, didn't work



Qualitative Data

• Service level did not change
– Top customers where called each year and polled

– No new complaints from customers

• Moral improved immensely
– Instead of waiting when a page was received, operations 

responded immediately

– Better communcation during outages



Conclusions

• Don't create artificial constraints

• Don't determine what is acceptable 
by some gut feeling

• Let business make decisions 

• Don't ever say “should”, form 
theories

• Measure, measure, measure

• Support or Disprove

• Develop predictions

• Familiarity: Monthly, Weekly, Daily 
Checklists



Bibliography

• Data Types: http://www.usablestats.com/lessons/noir

• FCAPS: http://en.wikipedia.org/wiki/FCAPS

• http://en.wikipedia.org/wiki/Scientific_method

• http://crunchtools.com/designing-a-robust-monitoring-system/

• http://crunchtools.com/


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

