
Building Production-Ready
Containers

Scott McCarty, RHCA
Product Manager - Linux Containers

Ben Breard, RHCA (EOL 2018)
Product Manager - Linux Containers

Containers Make Things Easy - Right? :-P

C

Agenda

● Capabilities, Problems, and Trade offs
● OCI Image Fundamentals
● Implications & Common Obstacles

○ (And how to overcome them!)
● Tips & Tricks
● Putting It All Together

CAPABILIITIES, CHALLENGES, AND
TRADE OFFS

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux5

Production-Ready Containers
What are the building blocks you need to think about?

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux6

Production-Ready Containers
What are the building blocks you need to think about?

1. Container Images
2. Orchestration Definitions
3. Delivery - Registries & Source Control

Mindset

“Using containers is as much of a business advantage as a technical
one. When building and using containers, layering is crucial. You need to
look at your application and think about each of the pieces and how
they work together—similar to the way you can break up a program into
a series of classes and functions.” - Ryan Hallisey

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux8

Application Delivery
Container images, assembly instructions, and resource requirements

OCI Image Fundamentals

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

Container Images
Virtual machines and container environments

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux11

Many different standards

OVERVIEW OF THE DIFFERENT STANDARDS
Vendor, Community, and Standards Body driven

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux12

Different standards are focused on
different parts of the stack.

● Tools like crictl use the CRI
standard

● Tools like Podman use standard
libraries

● Tools like runc are widely used

WORKING TOGETHER
Technical example

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

Fancy Files
Actually, they are layers...

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

Fancy File Servers
Actually, they are repositories

Another Hilarious XKCD Slide

The Tenets of Building

Rules
Foundational to all of these rules is source control for everything - treat all
of the artifacts as buildable from code

● Standardize
● Minimize
● Delegate
● Process
● Iterate

Rule: Standardize
Goal: Publish a standard set of images with
common lineage

● Base image(s)
○ Application Frameworks
○ Application Servers
○ Databases
○ Etc

● Benefits:
○ Easier scale
○ Maximize reuse of common layers
○ Limit environment anomalies

Rule: Minimize
Goal: Limit the content in the image to what
serves the workload

● FROM rhel7-atomic
● buildah can populate images with tools

from the host.
● Clearing package manager cache

Benefit:

● Smaller attack / patching surface
● More efficient push/pulls

Warning: taking this to the extreme will negate
layer sharing and not have the intended effect

Generate new layers
and/or run commands

on existing layers

Start from an existing
image or from scratch

Commit storage and
generate the image

manifest

Deliver image to a local store
or remote OCI / docker

registry

Rule: Delegate
Goal: Ownership needs to lie with
expertise

Benefit: Leverage your teams on the
part of the stack they know best

Traditional Workloads

Containerized Workloads

Goal: Automate rebuilds of all objects

● Testing (CI, performance, etc)
● Security
● Deployments

Benefits: Fast redeployment as you make
changes to the environment

Rule: Focus on Process and Automation

Rule: Iterate
Goal: DON’T REPEAT THE MISTAKES OF THE
PAST!!!!!

Benefit: Leverage the expertise of your teams
on the part of the stack they know best. Capture
it in code. Knowledge is temporal

3 in a row!

Putting it All Together

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

Building
Production-Ready
Containers

Compatibility is a
requirement for
portability. We must ship
the container images and
application definitions
between environments.
Image: Developer’s laptop,
development data centers, and cloud
data centers

Scott McCarty, Twitter: @fatherlinux26

Assembly Instructions
The building blocks

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

What Challenges do Containers Really
Solve?
In production?

True

● Better separation of concerns between
developers, operations, database
administrators, middleware specialists, etc

● Compatibility and portability still need to be
planned for.

● Developers and operations need a mix of
new and existing skills

● Better definitions of applications &
sub-components

● Truly distributed systems environment

False

● Everybody can do whatever they want.
Developers will just do everything
themselves. We no longer need specialists.

● Complete portability - build once, run
anywhere. I...mean...anywhere

● Containers are easy. Developers just use
them, don’t worry...

● You must completely break your application
up

● Forget everything you know, this is magic

