
LINUX CONTAINER INTERNALS

How they really work

Scott McCarty
Principal Product Manager, Containers
07/17/2018

Scott McCarty, Twitter: @fatherlinux2

Wifi, Labs, Etc

● Labs
○ learn.openshift.com/training

BASIC INFO
Introduction - Linux Container Internals

Scott McCarty, Twitter: @fatherlinux3

Introduction

● At Red Hat we encourage networking and we'd like you to spend 2 to 3 minutes introducing
yourselves to the person(s) next to you. Say what company or organization you're from, and what
you're looking to learn from this tutorial.

● We will use a completely hosted solution called Katacoda for this lab:
○ All you need is a web browser and Internet access: SSID - OReilly18 Password - oscon2018
○ Instructions, code repositories, and terminal will be provided to a real, working virtual machine
○ All code is clickable, all you have to do is click on it and it will paste into the terminal
○ The environment can be reset at any time by refreshing (very nice)

● https://www.katacoda.com/fatherlinux/training/subsystems/

AGENDA
Introduction - Linux Container Internals 2.1

https://www.katacoda.com/fatherlinux/training/subsystems/

INTRODUCTION

Scott McCarty, Twitter: @fatherlinux5

Introduction
Four new tools in your toolbelt

Container Images
The new standard in software packaging

Container Hosts
Container runtimes, engines, daemons

Container Registries
Sharing and collaboration

Container Orchestration
Distributed systems and containers

AGENDA
Introduction - Linux Container Internals

Scott McCarty, Twitter: @fatherlinux6

Container Standards
Understanding OCI, CRI, CNI, and more

Advanced Architecture
Building in resilience

Container History
Context for where we are today

AGENDA
Advanced - Linux Container Internals

Container Tools Ecosystem
Podman, Buildah, and Skopeo

Production Image Builds
Sharing and collaboration between specialists

Intermediate Architecture
Production environments

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux7

Production-Ready Containers
What are the building blocks you need to think about?

CONTAINER IMAGES

Scott McCarty, Twitter: @fatherlinux9

Even base images are made up of layers:

● Libraries (glibc, libssl)
● Binaries (httpd)
● Packages (rpms)
● Dependency Management (yum)
● Repositories (rhel7)
● Image Layer & Tags (rhel7:7.5-404)
● At scale, across teams of developers

and CI/CD systems, consider all of the
necessary technology

CONTAINER IMAGE
Open source code/libraries, in a Linux distribution, in a tarball

Scott McCarty, Twitter: @fatherlinux10

Starting with the basics:

● Programs rely on libraries
● Especially things like SSL - difficult to

reimplement in for example PHP
● Math libraries are also common
● Libraries can be compiled into

binaries - called static linking
● Example: C code + glibc + gcc =

program

IT ALL STARTS WITH COMPILING
Statically linking everything into the binary

Scott McCarty, Twitter: @fatherlinux11

Getting more advanced:

● This is convenient because programs
can now share libraries

● Requires a dynamic linker
● Requires the kernel to understand

where to find this linker at runtime
● Not terribly different than interpreters

(hence the operating system is called
an interpretive layer)

LEADS TO DEPENDENCIES
Dynamically linking libraries into the binary

Scott McCarty, Twitter: @fatherlinux12

Dependencies need resolvers:

● Humans have to create the
dependency tree when packaging

● Computers have to resolve the
dependency tree at install time
(container image build)

● This is essentially what a Linux
distribution does sans the installer
(container image)

PACKAGING & DEPENDENCIES
RPM and Yum were invented a long time ago

Scott McCarty, Twitter: @fatherlinux13

Dependencies need resolvers:

● Humans have to create the
dependency tree when packaging

● Computers have to resolve the
dependency tree at install time
(container image build)

● Python, Ruby, Node.js, and most
other interpreted languages rely on C
libraries for difficult tasks (ex. SSL)

PACKAGING & DEPENDENCIES
Interpreters have to handle the same problems

Scott McCarty, Twitter: @fatherlinux14

Lots of payload media types:

● Image Index/Manifest.json - provide
index of image layers

● Image layers provide change sets -
adds/deletes of files

● Config.json provides command line
options, environment variables, time
created, and much more

● Not actually single images, really
repositories of image layers

CONTAINER IMAGE PARTS
Governed by the OCI image specification standard

Scott McCarty, Twitter: @fatherlinux15

Each image layer is a permutation in time:

● Different files can be added, updated
or deleted with each change set

● Still relies on package management
for dependency resolution

● Still relies on dynamic linking at
runtime

LAYERS ARE CHANGE SETS
Each layer has adds/deletes

Scott McCarty, Twitter: @fatherlinux16

Each image layer is a permutation in time:

● Different files can be added, updated
or deleted with each change set

● Still relies on package management
for dependency resolution

● Still relies on dynamic linking at
runtime

LAYERS ARE CHANGE SETS
Some layers are given a human readable name

Scott McCarty, Twitter: @fatherlinux17

Each image layer is a permutation in time:

● Different files can be added, updated
or deleted with each change set

● Still relies on package management
for dependency resolution

● Still relies on dynamic linking at
runtime

CONTAINER IMAGES & USER OPTIONS
Come with default binaries to start, environment variables, etc

Scott McCarty, Twitter: @fatherlinux18

You have to build this dependency tree
yourself:

● DRY - Do not repeat yourself. Very
similar to functions and coding

● OpenShift BuildConfigs and
DeploymentConfigs can help

● Letting every development team
embed their own libraries takes you
back to the 90s

INTER REPOSITORY DEPENDENCIES
Think through this problem as well

Scott McCarty, Twitter: @fatherlinux19

Even base images are made up of layers:

● Libraries (glibc, libssl)
● Binaries (httpd)
● Packages (rpms)
● Dependency Management (yum)
● Repositories (rhel7)
● Image Layer & Tags (rhel7:7.5-404)
● At scale, across teams of developers

and CI/CD systems, consider all of the
necessary technology

CONTAINER IMAGE
Open source code/libraries, in a Linux distribution, in a tarball

CONTAINER REGISTRIES

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

REGISTRY SERVERS
Better than virtual appliance market places :-)

Defines a standard way to:

● Find images
● Run images
● Build new images
● Share images
● Pull images
● Introspect images
● Shell into running container
● Etc, etc, etc

Scott McCarty, Twitter: @fatherlinux22

Covering push, pull, and registry:

● Rest API (blobs, manifest, tags)
● Image Scanning (clair)
● CVE Tracking (errata)
● Scoring (Container Health Index)
● Graph Drivers (overlay2, dm)
● Responsible for maintaining chain of

custody for secure images from
registry to container host

CONTAINER REGISTRY & STORAGE
Mapping image layers

Scott McCarty, Twitter: @fatherlinux23

Determining the quality of repository
requires meta data:

● Errata is simple to explain, hard to
build

○ Security Fixes
○ Bug Fixes
○ Enhancements

● Per container images layer (tag), often
maps to multiple packages

START WITH QUALITY REPOSITORIES
Repositories depend on good packages

Scott McCarty, Twitter: @fatherlinux24

Based on severity and age of Security
Errata:

● Trust is temporal
● Even good images go bad over time

because the world changes around
you

SCORING REPOSITORIES
Images age like cheese, not like wine

Scott McCarty, Twitter: @fatherlinux25

Based on severity and age of Security
Errata:

● Trust is temporal
● Images must constantly be rebuilt to

maintain score of “A”

SCORING REPOSITORIES
Container Health Index

Scott McCarty, Twitter: @fatherlinux26

Registry has all of the image layers and can
have the signatures as well:

● Download trusted thing
● Download from trusted source
● Neither is sufficient by itself

PUSH, PULL & SIGNING
Signing and verification before/after transit

Scott McCarty, Twitter: @fatherlinux27

PUSH, PULL & SIGNING
Mapping image layers

Scott McCarty, Twitter: @fatherlinux28

Local cache maps each layer to volume or
filesystem layer:

● Overlay2 file system and container
engine driver

● Device Mapper volumes and
container engine driver

GRAPH DRIVERS
Mapping layers uses file system technology

Scott McCarty, Twitter: @fatherlinux29

PUSH, PULL & SIGNING
Mapping image layers

Scott McCarty, Twitter: @fatherlinux30

Covering push, pull, and registry:

● Rest API (blobs, manifest, tags)
● Image Scanning (clair)
● CVE Tracking (errata)
● Scoring (Container Health Index)
● Graph Drivers (overlay2, dm)
● Responsible for maintaining chain of

custody for secure images from
registry to container host

CONTAINER REGISTRY & STORAGE
Mapping image layers

CONTAINER HOSTS

Scott McCarty, Twitter: @fatherlinux32

CONTAINER HOST BASICS
Container Engine, Runtime, and Kernel

Scott McCarty, Twitter: @fatherlinux33

Important corrections

● Containers do not run ON docker.
Containers are processes - they run
on the Linux kernel. Containers are
Linux processes (or Windows).

● The docker daemon is one of the
many user space tools/libraries that
talks to the kernel to set up
containers

CONTAINERS DON’T RUN ON DOCKER
The Internet is WRONG :-)

Scott McCarty, Twitter: @fatherlinux34

User space and kernel work together

● There is only one process ID structure
in the kernel

● There are multiple human and
technical definitions for containers

● Container engines are one technical
implementation which provides both
a methodology and a definition for
containers

PROCESSES VS. CONTAINERS
Actually, there is no processes vs. containers in the kernel

Scott McCarty, Twitter: @fatherlinux35

Think of the Docker Engine as a giant proof
of concept - and it worked!

● Container images
● Registry Servers
● Ecosystem of pre-built images
● Container engine
● Container runtime (often confused)
● Container image builds
● API
● CLI
● A LOT of moving pieces

THE CONTAINER ENGINE IS BORN
This was a new concept introduced with Docker Engine and CLI

Scott McCarty, Twitter: @fatherlinux36

DIFFERENT ENGINES
All of these container engines are OCI compliant

Podman CRI-O Docker

Scott McCarty, Twitter: @fatherlinux37

CONTAINER ENGINE VS. CONTAINER HOST
In reality the whole container host is the engine - like a Swiss watch

VS.

Scott McCarty, Twitter: @fatherlinux38

Tightly coupled communication through the
kernel - all or nothing feature support:

● Operating System (kernel)
● Container Runtime (runc)
● Container Engine (Docker)
● Orchestration Node (Kubelet)
● Whole stack is responsible for

running containers

CONTAINER HOST
Released, patched, tested together

Scott McCarty, Twitter: @fatherlinux39

CONTAINER ENGINE
Defining a container

Scott McCarty, Twitter: @fatherlinux40

Normal processes are created, destroyed,
and managed with system calls:

● Fork() - Think Apache
● Exec() - Think ps
● Exit()
● Kill()
● Open()
● Close()
● System()

KERNEL
Creating regular Linux processes

Scott McCarty, Twitter: @fatherlinux41

What is a container anyway?

● No kernel definition for what a
container is - only processes

● Clone() - closest we have
● Creates namespaces for kernel

resources
○ Mount, UTC, IPC, PID, Network,

User
● Essentially, virtualized data structures

KERNEL
Creating “containerized” Linux processes

Scott McCarty, Twitter: @fatherlinux

KERNEL
Namespaces are all you get with the clone() syscall

Scott McCarty, Twitter: @fatherlinux

KERNEL
Even namespaced resources use the same subsystem code

Scott McCarty, Twitter: @fatherlinux44

Expects some things from the user:

● OCI Manifest - json file which contains
a familiar set of directives - read only,
seccomp rules, privileged, volumes,
etc

● Filesystem - just a plain old directory
which has the extracted contents of a
container image

CONTAINER RUNTIME
Standarding the way user space communicates with the kernel

Scott McCarty, Twitter: @fatherlinux45

CONTAINER RUNTIME
Adds in cgroups, SELinux, sVirt, and SECCOMP

Scott McCarty, Twitter: @fatherlinux46

There is a rich history of standardization
attempts in Linux:

● LibVirt
● LXC
● Systemd Nspawn
● LibContainer (eventually became

runc)

CONTAINER RUNTIME
But, there were others before runc, what’s the deal?

Scott McCarty, Twitter: @fatherlinux47

Three major jobs:

● Provide an API for users and robots
● Pulls image, decomposes, and

prepares storage
● Prepares configuration - passes to

runc

CONTAINER ENGINE
Provides an API prepares data & metadata for runc

Scott McCarty, Twitter: @fatherlinux48

In action:

● Number of daemons & programs
working together

○ dockerd
○ containerd
○ runc

PROVIDE AN API
Regular processes, daemons, and containers all run side by side

Scott McCarty, Twitter: @fatherlinux49

Pulling, caching and running containers:

● Most container engines use graph
drivers which rely on kernel drivers
(overlay, device mapper, etc)

● There is work going on to do this in
user space, but there are typically
performance trade offs

PULL IMAGES
Mapping image layers

Scott McCarty, Twitter: @fatherlinux50

Understanding implications of bind mounts:

● Copy on write layers can be slow
when writing lots of small files

● Bind mounted data can reside on any
VFS mount (NFS, XFS, etc)

PREPARE STORAGE
Copy on write and bind mounts

Scott McCarty, Twitter: @fatherlinux51

Three major inputs:

● User inputs can override defaults in
image and engine

● Image inputs can override engine
defaults

● Engine provides sane defaults so that
things work out of the box

PREPARE CONFIGURATION
Combination of image, user, and engine defaults

Scott McCarty, Twitter: @fatherlinux52

In action:

● Takes user specified options
● Pulls image, expands, and parses

metadata
● Creates and prepares CNI json blob
● Hands CNI blob and environment

variables to one or more plugins
(bridge, portmapper, etc)

PREPARE CONFIGURATION + CNI
Regular processes, daemons, and containers all run side by side

Scott McCarty, Twitter: @fatherlinux53

ENGINE, RUNTIME, KERNEL, AND MORE
All of these must revision together and prevent regressions together

+

Scott McCarty, Twitter: @fatherlinux54

BONUS INFORMATION
Other related technology

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

Containers With Advanced Isolation
Kata Containers, gVisor, and KubeVirt (because deep down inside you want to know)

● Kata Containers integrate at the container runtime
layer

● gVisor integrates at the container runtime layer
● KubeVirt not advanced container isolation. Add-on

to Kubernetes which extends it to schedule VM
workloads side by side with container workloads

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

Kata Containers
Containers in VMs

You still need connections to the
outside world:

● Shim offers reaping of processes/VMs similar to
normal containers

● Proxy allows serial access into container in VM
● P9fs is the communication channel for storage

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

gVisor
Anybody remember user mode Linux?

gVisor is:

● Written in golang
● Runs in userspace
● Reimplements syscalls
● Reimplements hardware
● Uses 9p for storage

Concerns

● Storage performance
● Limited syscall implementation

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

KubeVirt
Extension of Kubernetes for running VMs

KubeVirt is:

● Custom resource in Kubernetes
● Defined/actual state VMs
● Good for VM migrations
● Uses persistent volumes for VM disk

KubeVirt is not:

● Stronger isolation for containers
● Part of the Container Engine
● A replacement Container Runtime
● Based on container images

CONTAINER ORCHESTRATION

RED HAT AND CONTAINERS - CONFIDENTIAL - NDA REQUIRED

KUBERNETES & OPENSHIFT
It’s a 10 ton dump truck that handles pretty well at 200 MPH

Two major jobs:

● Scheduling - distributed systems computing.
Resolving where to put containers in the
cluster and allowing users to connect to
them

● Provide an API - can be consumed by users
or robots. Defines a model state for the
application. Completely new way of thinking.

RED HAT AND CONTAINERS - CONFIDENTIAL - NDA REQUIRED

SCHEDULING CONTAINERS
Defining the desired state

● Requires thinking in a completely new way - distributed systems
● Fault tolerance must be designed into the system

RED HAT AND CONTAINERS - CONFIDENTIAL - NDA REQUIRED

MODELING THE APPLICATION
Defining the desired state

Modeling the application using defined state, actual
state. Resolving discrepancies:

● The end user defines the desired state
● The system continuously resolves

discrepancies by taking action
● Automation can also modify the desired

state - Inception

RED HAT AND CONTAINERS - CONFIDENTIAL - NDA REQUIRED

ADVANCED MODELING
Many other resource can be defined

RED HAT AND CONTAINERS - CONFIDENTIAL - NDA REQUIRED

ADVANCED MODELING
Humans interact with these resource through defined state

RED HAT AND CONTAINERS - CONFIDENTIAL - NDA REQUIRED

ADVANCED MODELING
These resources are virtual, but map to real world infrastructure

ADVANCED MODULES

Scott McCarty, Twitter: @fatherlinux67

Container Standards
Understanding OCI, CRI, CNI, and more

Advanced Architecture
Building in resilience

Container History
Context for where we are today

AGENDA
Advanced - Linux Container Internals

Container Tools Ecosystem
Podman, Buildah, and Skopeo

Production Image Builds
Sharing and collaboration between specialists

Intermediate Architecture
Production environments

CONTAINER STANDARDS

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

THE PROBLEM

With no standard, there is
no way to automate. Each
box is a different size, has
different specifications.
No ecosystem of tools
can form.
Image: Boxes manually loaded on
trains and ships in 1921

INSERT DESIGNATOR, IF NEEDED70

Allow communities with competing interests to work together
There are many competing interests, but as a community we have common goals.

Enable ecosystems of products and tools to to form
Cloud providers, software providers, communities and individual contributors can all
build tools.

Protect customer investment
The world of containers is moving very quickly. Protect your investment in training,
software, and building infrastructure.

WHY STANDARDS MATTER TO YOU
Click to add subtitle

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux71

The analogy is strikingly good. The
importance of standards is critical:

● Failures are catastrophic in a fully
automated environments, such as port in
Shanghai (think CI/CD)

● Something so simple, requires precise
specification for interoperability (Files &
Metadata)

● Only way to protect investment in
equipment & infrastructure (container
orchestration & build processes)

SIMILAR TO REAL SHIPPING CONTAINERS
Standards in different places achieve different goals

2008:
KERNEL & USER
NAMESPACES

2008:
LINUX
CONTAINER
PROJECT (LXC)

2013:
DOTCLOUD
BECOMES
DOCKER

2013:

RED HAT
ENTERPRISE
LINUX

20
00

20
10

20
05

2000:

JAILS ADDED
TO FREEBSD

2006:
PROCESS
CONFINEMENT

2007:
GPC RENAMED
CGROUPS

2014:
GOOGLE
KUBERNETES

2001:
LINUX -VSERVER
PROJECT

2003:

SELINUX
ADDED TO LINUX
MAINLINE

2005:
FULL RELEASE
OF SOLARIS
ZONES

2013:
DOTCLOUD PYCON
LIGHTNING TALK

1979:

CHROOT
SYSCALL ADDED

19
79

How did we get here?

2017:
Moby project
Announced

2018:
CRI-O is GA and
powers OpenShfit
Online

20
17

20
16

20
18

2015:
Tectonic
Announced

2016:
Docker engine 1.12
adds swarm

2016:
CRI-O project
launched under
the name OCID

2017:
Buildah released
and ships in RHEL

2018:
Podman released
and ships in RHEL

2017:
Kata merges Clear
& RunV projects

2017:
Docker includes
the new
containerd

2016:
Containerd
project launched

2017:
V1.0 of image &
runtime spec

2018:
V1.0 of
distribution spec

2016:
Skopeo project
launched under
the name OCID

20
15

2015:

RED HAT
CONTAINER
PLATFORM 3.0

2015:
STANDARDS VIA
OCI AND CNCF

Where are we going?

74

Important corrections

● Containers do not run ON docker.
Containers are processes - they run
on the Linux kernel. Containers are
Linux.

● The docker daemon is one of the
many user space tools/libraries that
talks to the kernel to set up
containers

ARCHITECTURE
The Internet is WRONG :-)

7
5

Containers Are Open

Established in June 2015 by Docker and other leaders in the container
industry, the OCI currently contains three specifications which govern,
building, running, and moving containers.

7
6

Standards Are Well Governed

● Governed by The Linux
Foundation

● Ecosystem includes:
○ Vendors
○ Cloud Providers
○ Open Source Projects

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux77

Many different standards

OVERVIEW OF THE DIFFERENT STANDARDS
Vendor, Community, and Standards Body driven

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux78

Different standards are focused on
different parts of the stack.

● Container Images & Registries
● Container Runtimes
● Container Networking

WORKING TOGETHER
Standards in different places achieve different goals

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux79

Container images need to express user’s
intent when built and run.

● How to run
● What to run
● Where to run

WHAT ARE CONTAINERS ANYWAY?
Data and metadata

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux80

Fancy files and fancy processes

IMAGE AND RUNTIME SPECIFICATIONS
Powerful standards which enable communities and companies to build best of breed tools

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux81

Allows users to build container
images with any tool they

choose. Different tools are good
for different use cases.

WORKFLOW OF CONTAINERS
The building blocks of how a container goes from image to running process

The container engine is
responsible for creating the

config.json file and unpacking
images into a root file system.

OCI compliant runtimes can
consume the config.json and
root filesystem, and tell the
kernel to create a container.

OCI compliant runtimes can be
built for multiple operating

systems including Linux,
Windows, and Solaris

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux82

TYING IT ALL TOGETHER
These standards are extremely powerful

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux83

Different standards are focused on
different parts of the stack.

● Tools like crictl use the CRI
standard

● Tools like Podman use standard
libraries

● Tools like runc are widely used

WORKING TOGETHER
Technical example

Scott McCarty, Twitter: @fatherlinux84

The landscape is made up of committees,
standards bodies, and open source
projects:

● Docker/Moby
● Kubernetes/OpenShift
● OCI Specifications
● Cloud Native Technical Leadership

THE COMMUNITY LANDSCAPE
Open Source, Leadership & Standards

CONTAINER
ECOSYSTEM

Scott McCarty, Twitter: @fatherlinux86

AN OPEN SOURCE SUPPLY CHAIN
One big tool, or best of breed Unix like tools based on standards

Scott McCarty, Twitter: @fatherlinux87

BASIC CONTAINERS ARE SIMILAR TO PDF?
Find, Run, Build, and Share. Collaboration with any reader/writer

==

Scott McCarty, Twitter: @fatherlinux88

● A standard definition for a container at rest
○ OCI Image Specification - includes image and metadata in a bundle

● A standard mechanism to pull the bundle from a container registry to the host
○ OCI Distribution Specification - specifies protocol for registry servers
○ github.com/containers/image

● Ability to uncompress and map the OCI image bundle to local storage
○ github.com/containers/storage

● A standard mechanism for running a container
○ OCI Runtime Specification - expects only a root file system and config.json
○ The default runc implementation of the Runtime Spec (same tool Docker uses)

MINIMUM TO BUILD OR RUN A CONTAINER?
Standards and open source code

https://github.com/opencontainers/image-spec/blob/master/spec.md
https://github.com/opencontainers/distribution-spec
http://github.com/containers/image
http://github.com/containers/image
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runc

Scott McCarty, Twitter: @fatherlinux89

● The minimum to build or run a container

AND

● A standard way for the Kublet to communicate with the Container Engine
○ Container Runtime Interface (CRI) - the protocol between the Kubelet and Engine

● A daemon which communicates with CRI
○ gRPC Server - a daemon or shim which implements this server specification

● A standard way for humans to interface with the gRPC server to troubleshoot and debug
○ cri-ctl - a node based CLI tool that can list images, view running containers, etc

WHAT ELSE DOES KUBERNETES NEED?
Standards and open source code

https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://github.com/kubernetes-sigs/cri-tools

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux90

THERE ARE NOW ALTERNATIVES
Moving to Podman in RHEL 8 and CRI-O in OpenShift 4

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

THE UNDERLYING ECOSYSTEM
Many tools and libraries

skopeo

Scott McCarty, Twitter: @fatherlinux92

CREATING DOWNSTREAM PRODUCTS
Release timing is critical to solving problems

Scott McCarty Twitter: @fatherlinux93

FIND

Can start anywhere

RUN BUILD SHARE INTEGRATE DEPLOY

Traditional Development Cloud Native

RHEL (Podman/Buildah/Skopeo) OpenShift (Kubernetes)

THE JOURNEY

Quay

Scott McCarty Twitter: @fatherlinux94

CUSTOMER NEEDS
Mapping customer needs to solutions

Single Node

Multi Node

Capability

Red Hat
Enterprise Linux

OpenShift

Product

Linux &
Container Tools

Linux &
Kubernetes

Platform

Podman

CRI-O

Container Engine

Scott McCarty, Twitter: @fatherlinux95

Red Hat Enterprise Linux 8
The container tools module

Scott McCarty, Twitter: @fatherlinux96

PODMAN ARCHITECTURE
Find, Run, Build, and Share. Collaboration with any reader/writer

Red Hat Enterprise Linux High Touch Beta

Modules are the mechanism of delivering multiple streams (versions) of software within a major release. This
also works the other way round, a single stream across multiple major releases.

Modules are collections of packages representing a logical unit e.g. an application, a language stack, a
database, or a set of tools. These packages are built, tested, and released together.

Each module defines its own lifecycle which is closer to the natural life of the app rather than the RHEL
lifecycle.

APPLICATION STREAMS USE MODULES

PostgreSQL 9.4
Stream

5 years of updates

5 years of updatesPostgreSQL 10
Stream

3 years of updatesPHP 7.1
Stream

3 years of updatesPHP 7.2
Stream

Red Hat Enterprise Linux High Touch Beta

One Module delivered with multiple Application Streams based on different use cases:

● The rhel8 stream delivers new versions for developers
● The versioned, stable streams provide stability for operations

○ Created once a year, supported for two years
○ Only backports of critical fixes

THE CONTAINER TOOLS RELEASES

rhel8
 Fast Stream

Rolling Stream

2 years of updatesV1
Stable Stream

2 years of updatesV2
Stable Stream

Scott McCarty, Twitter: @fatherlinux99

OpenShift 4
CRI-O and Buildah as a library

Scott McCarty, Twitter: @fatherlinux100

CRI-O ARCHITECTURE
Run containers

Scott McCarty, Twitter: @fatherlinux101

BUILDAH ARCHITECTURE
Build and share containers

Red Hat Enterprise Linux High Touch Beta

All components for running containers released, tested, and supported together for reliability:

● CRI-O moves in lock-step with the underlying Kubernetes
● The runc container runtime is delivered side by side
● Buildah delivered as a library specifically for OpenShift. No commands for users.

IN LOCKSTEP WITH KUBERNETES

OpenShift 4.X

Kubernetes 1.13
 CRI-O 1.13

Support updates

Support updatesKubernetes 1.14
CRI 1.14

Support updatesKubernetes 1.15
CRI-O 1.15

PRODUCTION
IMAGE BUILDS

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

Fancy Files
How do we currently collaborate in the user space?

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

Fancy Files
The future of collaboration in the user space....

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

Fancy Files
The future of collaboration in the user space....

INTERMEDIATE ARCHITECTURE

Scott McCarty, Twitter: @fatherlinux108

The orchestration toolchain adds the
following:

● More daemons (it’s a party) :-)
● Scheduling across multiple hosts
● Application Orchestration
● Distributed builds (OpenShift)
● Registry (OpenShift)

THE ORCHESTRATION TOOLCHAIN
On Multiple Hosts

Scott McCarty, Twitter: @fatherlinux109

THE LOGIC
Bringing it All Together

ADVANCED ARCHITECTURE

Scott McCarty, Twitter: @fatherlinux

In distributed systems, the user must interact through APIs

111

TYPICAL ARCHITECTURE
Bringing it All Together

HISTORY

THE HISTORY OF CONTAINERS

2008:
KERNEL & USER
NAMESPACES

2008:
LINUX
CONTAINER
PROJECT (LXC)

2013:
DOTCLOUD
BECOMES
DOCKER

2013:

RED HAT
ENTERPRISE
LINUX

20
00

20
10

20
05

2000:

JAILS ADDED
TO FREEBSD

2006:
PROCESS
CONFINEMENT

2007:
GPC RENAMED
CGROUPS

2014:
GOOGLE
KUBERNETES

2001:
LINUX -VSERVER
PROJECT

2003:

SELINUX
ADDED TO LINUX
MAINLINE

2005:
FULL RELEASE
OF SOLARIS
ZONES

2013:
DOTCLOUD PYCON
LIGHTNING TALK

1979:

CHROOT
SYSCALL ADDED

19
79

2017:
Moby project
Announced

2018:
CRI-O is GA and
powers OpenShfit
Online

CONTAINER INNOVATION IS NOT FINISHED

20
17

20
16

20
18

2015:
Tectonic
Announced

2016:
Docker engine 1.12
adds swarm

2016:
CRI-O project
launched under
the name OCID

2017:
Buildah released
and ships in RHEL

2018:
Podman released
and ships in RHEL

2017:
Kata merges Clear
& RunV projects

2017:
Docker includes
the new
containerd

2016:
Containerd
project launched

2017:
V1.0 of image &
runtime spec

2018:
V1.0 of
distribution spec

2016:
Skopeo project
launched under
the name OCID

20
15

2015:

RED HAT
CONTAINER
PLATFORM 3.0

2015:
STANDARDS VIA
OCI AND CNCF

THANK YOU

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

Scott McCarty Twitter: @fatherlinux Blog: bit.ly/fatherlinux

Mounts
Copy on write vs. bind mounts

Scott McCarty, Twitter: @fatherlinux117

10:15AM—10:25AM
INTRODUCTION

11:35AM—12:05PM
CONTAINER ORCHESTRATION

10:25AM—10:40AM
ARCHITECTURE

12:05PM—12:15PM
CONCLUSION

10:40AM—11:05AM
CONTAINER IMAGES

11:05AM—11:35PM
CONTAINER HOSTS

AGENDA
L103118 - Linux container internals

Scott McCarty, Twitter: @fatherlinux

● Presentation (Google Presentation): http://bit.ly/2pYAI9W
● Lab Guide (this document): http://bit.ly/2mIElPG
● Exercises (GitHub): http://bit.ly/2n5NtPl

118

Materials
The lab is made up of multiple documents and a GitHub repository

http://bit.ly/2pYAI9W
http://bit.ly/2mIElPG
http://bit.ly/2n5NtPl

Scott McCarty, Twitter: @fatherlinux

● Jamie Duncan: @jamieeduncan jduncan@redhat.com
● Billy Holmes: @gonoph111 biholmes@redhat.com
● John Osborne: @openshiftfed josborne@redhat.com
● Scott McCarty: @fatherlinux smccarty@redhat.com

119

CONTACT INFORMATION
We All Love Questions

