
Building Production-Ready Containers

Scott McCarty, RHCA
Product Manager - Linux Containers

Ben Breard, RHCA
Product Manager - CoreOS

Containers Make Things Easy, Right?

Containers Make Things Easy, Right?

AGENDA

● Capabilities, Problems, and Trade offs
● Fundamental Shift in Mindset
● Implications & Common Obstacles

○ (And how to overcome them!)
● The Tenets of Building
● Putting It All Together

CAPABILITIES, CHALLENGES, AND
TRADE OFFS

PROBLEM

“Most uses of Docker are like a junk drawer: neat on the outside, a total
mess on the inside. People stuff their python 2 app in there and forget
what their dependencies are, or where they got them from. Good luck
upgrading that 2-3 years from now.”
- gerbilly on Hacker News

https://news.ycombinator.com/user?id=gerbilly

MINDSET

“Using containers is as much of a business advantage as a technical
one. When building and using containers, layering is crucial. You need to
look at your application and think about each of the pieces and how
they work together—similar to the way you can break up a program into
a series of classes and functions.”
- Ryan Hallisey

BLOCKERS

1. Code: mysqld

2. Configuration: /etc/my.cnf

3. Data: /var/lib/mysql

4. Other stuff :-)

OTHER STUFF :-)
EASY MODERATE DIFFICULT

Code Completely Isolated (single process) Somewhat Isolated (multiple processes) Self Modifying (e.g. Actor Model)

Configuration One File Several Files Anywhere in Filesystem

Data Saved in Single Place Saved in Several Places Anywhere in Filesystem

Secrets Static Files Network Dynamic Generation of Certificates

Network HTTP, HTTPS TCP, UDP IPSEC, Highly Isolated

Installation Packages, Source Installer and Understood Configuration Installers (install.sh)

Licensing Open Source Proprietary Restrictive & Proprietary

Recoverability Easy to Restart Fails Sometimes Fails Often

APPLICATION DELIVERY
Container images, assembly instructions, and resource requirements

More than just container images to deliver real applications

● Image Build Instructions
○ Source Control

● Container Images
○ Registries

● Orchestration Definitions
○ Source Control

● Operators
○ Operators Lifecycle

Manager

PRODUCTION-READY CONTAINERS

How will you use your extra free time?

SOFTWARE NIRVANA

The Tenets of Building

THE 5 COMMANDMENTS

Foundational to all of these rules is
source control for everything - treat
all of the artifacts as buildable from
code

● Standardize
● Minimize
● Delegate
● Process
● Iterate

STANDARDIZE
Goal: Publish a standard set of
images with common lineage

● Base image(s)
○ Application Frameworks
○ Application Servers
○ Databases
○ Etc

● Benefits:
○ Easier scale
○ Maximize reuse of common layers
○ Minimize pulls
○ Limit environment anomalies

Goal: Limit the content in the image
to what serves the workload

● buildah can populate images
with tools from the host.

Benefit:
● Smaller attack / patching

surface
● More efficient push/pulls

Warning: taking this to the extreme will negate layer
sharing and not have the intended effect

MINIMIZE

Build OCI/docker Images

Leverage the host tools Leverage a buildah container

DELEGATE

Goal: Ownership needs to lie
with expertise

Benefit: Leverage your teams
on the part of the stack they
know best

Traditional Workloads

Containerized Workloads

FOCUS ON PROCESS AND AUTOMATION

Goal: Automate rebuilds of all objects
● Testing (CI, performance, etc)
● Security
● Operators

Benefits: Fast redeployment as you
make changes to the environment

ITERATE

Goal: DON’T REPEAT THE
MISTAKES OF THE PAST!!!!!

Benefit: Capture it in code.
Knowledge is temporal.

3 IN A ROW!

PUTTING IT ALL TOGETHER

DON’T GET STUCK IN A SINGLE NODE MINDSET

This mindset:
● Only thinks about container

images
● Treats containerized

applications like traditional
applications

● Doesn’t fully leverage the
power of containers

● Doesn’t think about
automation at day two

FIND RUN BUILD SHARE

Traditional Development

THINK ABOUT DAY-2 OPERATIONS

This mindset:
● Think about how everything can

be automated
● Offload updates, backups,

restarts, failures all mundane
tasks

● Interact through an API, not by
SSH’ing into nodes

● Drive the entire platform by
defining state, not just the
applications

INTEGRATE DEPLOY

Cloud Native

OpenShift (Kubernetes)

ANOTHER HILARIOUS XKCD

WHAT CHALLENGES DO CONTAINERS
REALLY SOLVE IN PRODUCTION?

True

● Better separation of concerns between
developers, operations, database
administrators, middleware specialists, etc

● Compatibility and portability still need to be
planned for.

● Developers and operations need a mix of
new and existing skills

● Better definitions of applications &
sub-components

● Truly distributed systems environment

False

● Everybody can do whatever they want.
Developers will just do everything
themselves. We no longer need specialists.

● Complete portability - build once, run
anywhere. I...mean...anywhere

● Containers are easy. Developers just use
them, don’t worry...

● You must completely break your application
up

● Forget everything you know, this is magic

