
Containerization: Migrating
Existing Applications
Chris Collins (@ChrisInDurham)
Sr. Automation Engineer, Duke University

Scott McCarty (@fatherlinux)
Sr. Principal Technical Marketing Manager, Red Hat

Container Journey

Real World Experience

PROBLEM
● DDOS Attack targeting Duke.edu
● flooding load balancers
● all load- balanced services impacted
● Duke.edu down

Quick Win: Combatting a Denial of Service Attack

SOLUTION
● Duke.edu container image
● AWS Docker hosts
● External DNS for duke.edu pointed to AWS
● Internal traffic kept inside Duke

THE RESULT

● Duke.edu unaffected for internal customers
● Duke.edu traffic handled by AWS for external customers/DDOS
● 30-minute migration!
● Attack removed from load-balancers
● Other load-balanced services back to normal

PROBLEM
● WordPress websites needed at large scale
● Individual server doesn’t scale with load
● Multi-server states hard to synchronize
● Development environment difficult to

replicate

Inventory: Large Scale Web Applications

SOLUTION
● Containerized service
● Site code distributed in images
● Single-service containers are easy to swap
● Development & production built from

images

THE RESULT

● Enterprise-level - ~8,800 sites and ~29,000 users
● Quickly scalable, cloudburst-able
● Interchangeable front-end containers = automated sites with custom DNS and HTTPS
● Developers have taken ownership of deployment, can update, roll-back, clone w/o

sysadmins

PROBLEM
● Researchers want custom tool chains
● IT wants researchers on shared

infrastructure
● Researchers need to be able to

reproduce/share environment

Inventory: Research Computing, Multiple Stacks

SOLUTION
● Run every job in a custom Docker

formatted container
● Keep archive of old container images with

log of which version was used for which job
run

THE RESULT

● Self-service: Researchers at Duke are starting to build their own Docker formatted container
images to run their analysis

● Cloudburst-able: Workloads scale out of on-prem HPC to AWS/Azure cloud
● Processing job shipped to data, not vice-versa

PROBLEM
● Legacy IDM Apps
● Unpredictable behavior after patching
● Result: infrequent patching
● Inability to easily upgrade
● Result: ancient hardware

Inventory: IDM in a Container

SOLUTION
● Build IDM apps in containers
● Jenkins builds every 4 hours w/latest

patches
● Automated testing notifies of failures
● Last “known good” image kept

THE RESULT

● “Known Good” image always available; uptime assured
● Breaking patches can be investigated while “Known Good” images are kept in use
● Extremely portable
● Hardware independent
● Other environment can be setup, tested, torn down in minutes

PROBLEM
● Dozens of daemons, their own data volumes
● Libraries share config files
● Installer logic expects single machine
● Knowledge embedded in init/systemd
● Extensive initial setup needed

Inventory: Red Hat IDM in a Container

SOLUTION
● Build IDM (aka FreeIPA) in single container
● Simplified install, upgrade, rollback
● Minimize data volumes
● Template based data volume population

THE RESULT

● Better software delivery
● Better technical demarcation between vendor and customer
● Extremely portable
● Environments can be setup, tested, torn down in minutes
● Same pattern for other products and services: OpenShift, OpenStack (yes, OSP), sssd, etc.

Workload Characterization Guidelines

The Tenancy Scale

Application Containers

1. Code: mysqld

2. Configuration: /etc/my.cnf

3. Data: /var/lib/mysql

4. Other stuff :-)

Level of Effort
Easy Moderate Difficult

Code Completely Isolated (single process) Somewhat Isolated (multiple processes) Self Modifying (e.g. Actor Model)

Configuration
One Configuration File Several Configuration Files Configuration Anywhere in

Filesystem

Data Data Saved in Single Place Data Saved in Several Places Data Anywhere in Filesystem

Secrets Static Files Network Dynamic Generation of Certificates

Network HTTP, HTTPS TCP, UDP IPSEC, Highly Isolated

Installation Packages, Source Installer and Understood Configuration Installers (install.sh)

Licensing Open Source Proprietary Restrictive & Proprietary

Further Reading & Citations

● Container Tidbits: When Should I Break My Application into Multiple Containers? http://red.ht/22xKw9i
● Architecting Containers Part 4: Workload Characteristics and Candidates for Containerization: http://red.ht/1SBw9ql

http://red.ht/22xKw9i
http://red.ht/1SBw9ql

