
Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

Containers for Grownups: Migrating
Traditional & Existing Applications

Almost all software was designed before containers

Scott McCarty

Container Strategist

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

Why Migrate

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

Container Journey

Scott McCarty Twitter: @fatherlinux4

FIND

Single Node

RUN BUILD

Traditional Development

The Journey

Scott McCarty Twitter: @fatherlinux5

FIND

Single Node+

RUN BUILD SHARE

Traditional Development

The Journey

Scott McCarty Twitter: @fatherlinux6

FIND

Multi Node

RUN BUILD SHARE INTEGRATE DEPLOY

Traditional Development Cloud Native

The Journey

Scott McCarty Twitter: @fatherlinux7

FIND

Can start anywhere

RUN BUILD SHARE INTEGRATE DEPLOY

Traditional Development Cloud Native

RHEL (Podman/Buildah/Skopeo) OpenShift (Kubernetes)

The Journey

Quay

Scott McCarty Twitter: @fatherlinux8

Customer Needs
Mapping customer needs to solutions

Single Node

Multi Node

Capability

Red Hat
Enterprise Linux

OpenShift

Product

Linux &
Container Tools

Linux &
Kubernetes

Technology

INSERT DESIGNATOR, IF NEEDED9

LIFT & SHIFT

Move the application as-is. Do the
minimal amount necessary to

containerize

REFACTOR

Leave much of the application
as-is. Build new strategic

portions.

REWRITE

Start from scratch - adopt the
latest software development
patterns (microservices, etc)

There are Different Options
Each has a different level of effort

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

The Problem

Almost all applications, even new
ones, are built on technologies
that were designed and
developed before Linux
Containers.

Image: Cargo Designed for a Ship from 1921

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

The solution
Learn to Migrate

Gaining migration skills will
help your team make good
strategic decisions about
what should and should
not be containerized.

INSERT DESIGNATOR, IF NEEDED12

UNIX TO
LINUX

Will my app run? Will my app run?

PHYSICAL TO
VIRTUAL

Will my app run?

APPS TO
CONTAINERIZED APPS

LISTEN TO YOUR APPLICATION
We have seen this before...

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

Guidance & Case Studies

INSERT DESIGNATOR, IF NEEDED14

Migration from process isolation to containers

APPLICATION CHARACTERISTICS
These are the things you need to think about..

Architectural Security Performance

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

Architecture

1. Code: mysqld

2. Configuration: /etc/my.cnf

3. Data: /var/lib/mysql

4. Other stuff :-)

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

Level of Effort
EASY MODERATE DIFFICULT

Code Completely Isolated (single process) Somewhat Isolated (multiple processes) Self Modifying (e.g. Actor Model)

Configuration One File Several Files Anywhere in Filesystem

Data Saved in Single Place Saved in Several Places Anywhere in Filesystem

Secrets Static Files Network Dynamic Generation of Certificates

Network HTTP, HTTPS TCP, UDP IPSEC, Highly Isolated

Installation Packages, Source Installer and Understood Configuration Installers (install.sh)

Licensing Open Source Proprietary Restrictive & Proprietary

Recoverability Easy to Restart Fails Sometimes Fails Often

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

The Tenancy Scale

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

Performance Characteristics
Bare Metal +Containers +Virtualization

CPU Intensive Fast Fast Fast

Memory Intensive Fast Fast Fast

Disk I/O Latency Fast Fast Medium

Disk I/O Throughput Fast Fast Fast

Network Latency Fast Fast Medium

Network Throughput Fast Fast Fast

Deployment Speed Slow Fast Medium

Uptime (Live Migration) No No Yes

Alternative OS Yes Some Yes

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

Use Cases & Demos

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

PROBLEM
● WordPress websites needed at large scale
● Individual server doesn’t scale with load
● Multi-server states hard to synchronize
● Development environment difficult to

replicate

Inventory: Large Scale Web Applications

SOLUTION
● Containerized service
● Site code distributed in images
● Single-service containers are easy to swap
● Development & production built from

images

THE RESULT

● Enterprise-level - ~8,800 sites and ~29,000 users
● Quickly scalable, cloudburst-able
● Interchangeable front-end containers = automated sites with custom DNS and HTTPS
● Developers have taken ownership of deployment, can update, roll-back, clone w/o

sysadmins

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

PROBLEM
● Dozens of daemons, their own data volumes
● Libraries share config files
● Installer logic expects single machine
● Knowledge embedded in init/systemd
● Extensive initial setup needed

Inventory: Red Hat IDM in a Container

SOLUTION
● Build IDM (aka FreeIPA) in single container
● Simplified install, upgrade, rollback
● Minimize data volumes
● Template based data volume population

THE RESULT

● Better software delivery
● Better technical demarcation between vendor and customer
● Extremely portable
● Environments can be setup, tested, torn down in minutes
● Same pattern for other products and services: OpenShift, OpenStack (yes, OSP), sssd, etc.

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

PROBLEM
● Can’t install software on prod servers
● Can’t introduce risk on prod servers
● Can’t access tools quickly

Inventory: Tools

SOLUTION
● Build tools containers
● Stage tools containers in registry server
● Completely self contained

THE RESULT

● Use tools and delete them easily (rhel-tools)
● Scan network
● Instrument kernel
● Use any tool you like

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

Remember, Containers Are Just Child Processes

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

Questions?

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

Further Reading & Citations

● Do Linux distributions still matter with containers? https://goo.gl/t4LLWw

● A Practical Introduction to Docker Terminology: http://red.ht/2beXHDD

● Container Tidbits: When Should I Break My Application into Multiple Containers? http://red.ht/22xKw9i

● Architecting Containers Part 4: Workload Characteristics and Candidates for Containerization: http://red.ht/1SBw9ql

● Supply Chain Demo on GitHub: http://bit.ly/2aY1WEO

● The New Stack: Container Defense in Depth: http://bit.ly/2buXflB

● Architecting Containers Series: http://red.ht/2aXjVJF

● Red Hat Connect for Technology Partners: https://connect.redhat.com/

https://goo.gl/t4LLWw
http://red.ht/2beXHDD
http://red.ht/22xKw9i
http://red.ht/1SBw9ql
http://bit.ly/2aY1WEO
http://bit.ly/2buXflB
http://red.ht/2aXjVJF
https://connect.redhat.com/

Scott McCarty Twitter: @fatherlinux Blog: bitly/fatherlinux

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

FUTURE OPPORTUNITIES

● Do Linux distributions still matter with containers? https://goo.gl/t4LLWw
● Let Red Hat help you analyze your application portfolio http://red.ht/2ic4TX3
● Check out Architecting Containers Series http://red.ht/1SBw9ql
● Learn more about Red Hat Summit at http://redhat.com/summit

27

https://goo.gl/t4LLWw
http://red.ht/2ic4TX3
http://red.ht/1SBw9ql
https://www.redhat.com/en/summit/2017

