
Hitachi & Red Hat collaborate:
Container migration guide
In open source, we feel strongly that to do something well, 
you have to get a lot of people involved - Linus Torvalds
Yamada Tatsuya & Scott McCarty
Hitachi & Red Hat
May 10th, 2018



Why Hitachi & Red Hat Collaborate
Hitachi had a unique perspective on how to operationalize checklists as well as upstream 
Kubernetes contributions, and Red Hat had a lot of experience migrating applications in 
engineering and consulting.

● Collaborated on philosophy of how to tackle the problem 
of migrations

● Developed set of runbook like checklists around 
architecture, security & performance

● Published free e-Book: https://red.ht/2EkVdkJ

https://red.ht/2EkVdkJ


Basic Philosophy



Purpose & Mission
To create a piece of content that would give teams easy, but crucial technical guidance

● Make the guide operational - teams can use it day to day
● Help teams leverage their existing technical knowledge
● Add additional knowledge around how to architect applications in containers
● Highlight characteristics of containerized applications

○ Architecture
○ Performance
○ Security



Technical Guidance



Three Pillars
Breaking the problem down



Architecture
Code, Configuration, Data and more….



Performance
Virtualization & Containers are additive technologies to bare metal



Security
Thinking about levels of isolation….



Containerizing Applications:
Discovering Challenges



Hitachi Solutions
Hitachi currently provides customers with the following kinds of DevOps services:

1. Hitachi’s own DevOps 
Stack with Kubernetes 
and Docker

2. OpenShift
a. OpenShift on 

Hitachi Server
b. OpenShift on 

Azure + Justware



Problems We Will Explore
We will highlight two interesting types of problems that surfaced while building container 
solutions at Hitachi

Issue Detail Category

Problem A:
Middleware

A-1: Some kernel parameters cannot be configured on each 
container, independently.

Performance

A-2: Some system calls cannot be executed from within a 
container.

Security

Problem B:
Storage

B-1: Raw device cannot be mapped to container by function 
of kubernetes volume.

Performance



PROBLEM A-1



Problem A-1
Some kernel parameters cannot be configured on each container, independently

Hitachi
Middleware

Kernel parameter
(/sys, /proc/, /dev, etc.)

Read Only

Hitachi
Middleware

Bare Metal or Virtual Machine Containers

Hitachi
Middleware

Kernel parameter
(/sys, /proc/, /dev, etc.)

Read/Write



Problem A-1
Raw device cannot be mapped to container by function of kubernetes volume

Parameters Detail Range
Node level sysctl It is set for each node and can not be set for each 

container.
Node

unsafe.sysctl Although it is set for each container, it may affect 
other containers.

Pod

safe.sysctl It is set for each container, and it does not affect 
other container.

Pod

There are 3 kinds of kernel parameters in the container.



Problem A-1
Raw device cannot be mapped to container by function of kubernetes volume

● We want to set kernel parameters to each container in order to use middleware, for 
example DB.

● Setting Node level sysctls or unsafe.sysctls will affect another container.

k8s Node

Linux

DB
namespace

Kernel
parameters

AP
namespace

Kernel
parameters

Unsafe 
sysctl

Safe 
sysctl

Kernel parameters

Node 
level 

sysctl

Server

Linux

DB

AP

Server

Linux
Hypervisor

Linux

Kernel
parameters

Kernel
parameters

Unsafe sysctl
or

Node level sysctl

Bare Metal or Virtual Machine Containers



Problem A-1
Raw device cannot be mapped to container by function of kubernetes volume

Goal
● Kernel parameters to be set without affecting other containers
● Kernel parameters classified as Node level / Unsafe should be able to also be set 

without affecting other containers

k8s Node

Linux

DB
namespace

Kernel
parameters

AP
namespace

Kernel
parameters

Unsafe 
sysctl

Kernel parameters

Node 
level 

sysctl
Containers

Safe 
sysctl



Problem A-1
Solution: Pod scheduling on nodes with desired kernel parameters

● Pods with only safe.sysctl place as usual.
● Pods with unsafe.sysctl or Node level sysctl place as followings steps.

○ Before placing a Pod on dedicated node, we add a Kubernetes Taint to the node so that other Pod is not placed on 
the node.

○ We set sysctl settings to the node.
○ We create the Pod with Kubernetes Tolerate so that it is placed on the Taint Node.

k8s Node(Shared)

Linux

AP
namespace

Kernel
parameters

AP
namespace

Kernel
parameters

Safe 
sysctl

k8s 1 Node(Dedicated)

Linux

DB
namespace

Kernel
parameters

k8s 2 Node(Dedicated)

Linux

DB
namespace

Kernel
parameters

Kernel parameters

Unsafe 
sysctl

Kernel parameters

Node
Level
sysctl

Unsafe.sysctl Unsafe.sysctl



PROBLEM A-2



Problem A-2
Some system calls cannot be executed from within a container

Hitachi Middleware

Linux Kernel

Hitachi
Middleware

Linux Kernel

Hitachi
Middleware

Bare Metal or Virtual Machine Containers

sys_*
seccomp

sys_*
seccomp



PROBLEM B-1



Problem B-1

22

ext4 fs

DB
(/var/lib/data)

sda raw bind

Persistent
Volume

Backend 
Storage

Storage Plugin
(Non Support)

FS

sda

Bare Metal or Virtual Machine Containers

Backend 
Storage

Block
Volume

Block
Volume

Server

Linux

Database

DB

Server

Linux
Hypervisor

Linux

sda sda

Storage 
Plugin

raw bind

Raw device cannot be mapped to container by function of kubernetes volume



Learn How to Migrate



Check Out the Guide

Download the e-Book:
https://red.ht/2EkVdkJ

https://red.ht/2EkVdkJ


THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat


